chatgpt如何使用对话更有效果

0人浏览 2025-11-26 07:50
chatGPT
chatGPT在线试用

新一代对话式人工智能,历史上增长最快的消费者应用程序

7个回答

  • 最佳回答
    公羊山灵羽
    公羊山灵羽
    caht gpt全称:Chat Generative Pre-trained Transformer1. chatGPT介绍chatGPT是由OpenAI开发的一个人工智能聊天机器人程序,于2022年11月推出。该程序使用基于GPT-3.5架构的大型语言模型并通过强化学习进行训练。ChatGPT目前仍以文字方式交互,而除了可以通过人类自然对话方式进行交互,还可以用于相对复杂的语言工作,包括自动文本生成、自动问答、自动摘要等在内的多种任务。如:在自动文本生成方面,ChatGPT可以根据输入的文本自动生成类似的文本(剧本、歌曲、企划等),在自动问答方面,ChatGPT可以根据输入的问题自动生成答案。还具有编写和调试计算机程序的能力。在推广期间,所有人可以免费注册,并在登录后免费使用ChatGPT实现与AI机器人对话。ChatGPT可以写出相似于真人程度的文章,并因其在许多知识领域给出详细的回答和清晰的答案而迅速获得关注,证明了从前认为不会被AI取代的知识型工作它也足以胜任,对于金融与白领人力市场的冲击相当大,但其事实准确性参差不齐被认为是一重大缺陷,其基于意识形态的模型训练结果并被认为需要小心地校正。ChatGPT于2022年11月发布后,OpenAI估值已涨至290亿美元[7]。上线两个月后,用户数量达到1亿。2. chatGPT如何训练数据ChatGPT使用基于人类反馈的监督学习和强化学习在 GPT-3.5 之上进行了微调。这两种方法都使用了人类训练员来提高模型的性能, 通过人类干预以增强机器学习的效果,从而获得更为逼真的结果。在监督学习的情况下,模型被提供了这样一些对话, 在对话中训练师j充当用户和AI助理两种角色。在强化步骤中,人类训练员首先对模型在先前对话中创建的响应进行评级。这些级别用于创建“奖励模型”, 使用近端策略优化(Proximal Policy Optimization-PPO)的多次迭代进一步微调。这种策略优化算法比信任域策略优化(trust region policy optimization)算法更为高效。这些模型是与 Microsoft合作,在其Microsoft Azure超级计算基础设施上训练的。OpenAI继续从ChatGPT用户那里收集数据,这些数据可用于进一步训练和微调 ChatGPT。 允许用户对他们从ChatGPT收到的回复投赞成票或反对票;在投赞成票或反对票时,他们还可以填写一个带有额外反馈的文本字段。ChatGPT的训练数据包括各种文档以及关于互联网、编程语言等各类知识,如BBS和Python编程语言。关于ChatGPT编写和调试计算机程序的能力的训练, 由于深度学习模型不懂编程,与所有其他基于深度学习的语言模型一样,只是在获取代码片段之间的统计相关性。
  • 单飘学若
    单飘学若
    为了让ChatGPT在对话中更有效果地使用,作为产品经理,我们可以采取以下措施:1. 改进模型训练:我们可以使用更多和更丰富的对话数据来训练ChatGPT。这样做可以提高模型对于对话语境的理解能力,使其能够更准确地理解用户的问题或需求。2. 设计更好的用户界面:提供一个用户友好的界面,让用户与ChatGPT进行无缝对话。这可以包括一个清晰的输入框,以及对话历史的可视化展示,帮助用户更好地跟踪对话的进展。3. 引入上下文处理:ChatGPT可以通过记忆之前的对话,使对话保持连贯性。这可以通过引入上下文处理技术来实现,例如使用记忆网络或Transformer模型来捕捉和处理上下文信息。4. 主动性与针对性:ChatGPT可以在对话中主动提问、澄清用户意图或请求进一步的细节,以更好地理解用户的需求。针对特定领域或任务,我们可以对ChatGPT进行特定训练,使其在相关领域的对话中表现更出色。5. 用户反馈和评估:持续收集用户的反馈和评估数据,以了解ChatGPT的性能和效果,并根据用户需求进行持续改进和优化。这可以通过用户调查、A/B测试等方法来实现。为了让ChatGPT在对话中更有效果地使用,我们需要改进模型训练、设计友好的用户界面、引入上下文处理、增加主动性与针对性,并持续收集用户反馈和评估数据。这些措施将有助于提高ChatGPT在对话中的表现和用户满意度。
  • 樊林风琪
    樊林风琪
    作为互联网公司的产品经理,我很高兴回答“ChatGPT如何使用对话更有效果”的问题。下面是一些产品角度的建议:1. 理解用户需求:了解用户在使用ChatGPT时的主要需求是关键。这可能包括解答问题、提供建议或执行特定任务。确保产品能够满足这些需求,并通过用户研究和反馈不断改进。2. 改善对话流程:设计一个良好的对话流程对于提高ChatGPT的效果至关重要。通过合理的对话结构和相应的用户界面,使用户能够轻松与ChatGPT进行交互,并确保所提供的回复与用户的问题或需求相匹配。3. 处理上下文:ChatGPT的发展意味着它能够理解和处理对话中的上下文信息。确保系统能够正确地理解先前的对话历史,以便提供连贯、一致的回复。这可以通过对上下文信息进行建模和适当的记忆机制来实现。4. 识别对话意图:ChatGPT应该能够识别用户对话的意图,以便能够提供准确的回复。通过自然语言处理和机器学习技术,训练ChatGPT以识别用户问题或请求的意图,并根据意图提供相应的回答。5. 管理多样性和偏见:ChatGPT可能会产生多样的回答,因此在产品设计阶段就应该考虑如何管理多样性。避免有害或有偏见的回答,并确保系统的回复是中立、正确和有价值的。6. 用户参与和反馈:用户参与和反馈对于持续改进ChatGPT至关重要。通过用户调查、用户测试和用户反馈渠道,了解用户体验和需求,并针对性地进行产品改进。通过以上这些产品角度的建议,我们可以使ChatGPT的使用对话更加有效。不断改进ChatGPT的功能和性能,提供更好的用户体验,并适应不断变化的用户需求。
  • 国卿云刚
    国卿云刚
    百度文心一言是每日更新的一句古诗词,旨在激发读者的思考,增强文人文魂。我期待文心一言能够带给我更多美好的文学体验,更深刻的文化意境,以及更多有趣的历史故事。进入3月中旬,全球科技巨头再次竞相亮相大语言模型赛道。一周之内,开发出ChatGPT的美国初创公司OpenAI,对OpenAI投入巨资的科技巨头微软,以及中国互联网龙头企业百度,相继发布了在大语言模型(LLM)领域的最新动态。这也再次引发了全球对该领域的关注。当地时间3月14日,OpenAI公布了其大型语言模型的最新版本——GPT-4,它比GPT-3.5的问答质量和技术都有明显提升。3月16日下午,百度开启新一代大语言模型、生成式AI产品文心一言测试,从而成为第一家加入该赛道竞争的中国企业。在发布会现场,百度创始人、董事长兼首席执行官李彦宏通过问答的形式,展示了文心一言在文学创作、商业文案创作、数理推算、中文理解、多模态生成等五个使用场景。几个小时后,微软宣布,将把GPT-4接入Office全家桶,新名为“Microsoft 365 Copilot”。正如财经E法在2月17日发布的文章(OpenAI独家回应|ChatGPT为何不向所有中国用户开放注册?)所述,中国内地和中国香港的手机号均无法注册ChatGPT账号。虽然OpenAI的应用程序编程接口(API)已向161个国家和地区开放,但不包括中国内地和中国香港。一方面,业界普遍关注,在AIGC(生成式人工智能)势不可挡的科技浪潮中,谁将成为下一个弄潮儿?另一方面,在中美科技竞合的敏感期,各方亦颇为关注百度迈出的第一步带来的涟漪,以及中国企业该如何应对。01“真的ready了吗?”3月16日,李彦宏身着白衬衫和运动鞋演讲。开场就直面疑问,“最近一段时间,很多朋友问我,为什么是你们真的ready了吗”?李彦宏的回答是,虽然百度已投入AI研究十多年,为发布文心一言做了充分准备,但“不能说完全ready了”,因为文心一言对标ChatGPT、甚至是GPT-4,门槛很高,还“有很多不完美的地方”。但他强调“一旦有了真实的人类反馈,文心一言的进步速度会非常快”。李彦宏解释,之所以选择当天发布,是因为市场有需求:客户和合作伙伴都希望能早一点用上最新最先进的大语言模型。如何理解李彦宏所言的“对标GPT-4的门槛很高”?当地时间3月14日,OpenAI公布了其大型语言模型的最新版本——GPT-4。GPT-4是大型的多模态模型,即能够接受图像和文本类型的输入。而GPT-3.5只能接受文本输入。在演示视频中,OpenAI总裁兼联合创始人格雷格·布罗克曼(Greg Brockman)用笔和纸画了一幅网站草图,并将图片输入GPT-4。仅1到2秒后,GPT-4就生成了网页代码,制作出了与草图高度相似的网站。根据OpenAI发布的实验数据, GPT-4模型相较前一代GPT-3.5已取得了巨大的进步,在许多专业测试中表现出超过绝大多数人类的水平。浙江大学国际联合商学院数字经济与金融创新研究中心联席主任盘和林认为,文心一言未来还有待全面开放来获得用户检验。无论是通过B端API还是直接向C端用户开放,用户体验口碑都是硬道理。当前ChatGPT没对中国用户开放,在国内市场,百度将获得先发优势。对OpenAI和百度的产品均做过测评的艾媒咨询CEO兼首席分析师张毅表示,GPT系列大模型,包括GPT-4与文心一言本质上都是同一类产品,只是它们各自的数据覆盖范畴和数据模型的积累长短不一。从短期看,OpenAI的产品准备时间相对更加充足,智能程度暂时领先一些。但是对文心一言而言,能在这么短的时间内训练出这样的一个产品,也是非常了不起的。张毅也对百度做出更好产品更有信心,他的理由是,从人工智能、大数据、大模型的人才储备来看,中国会更有优势。中央财经大学数字经济融合创新发展中心主任陈端则认为,与海外竞争对手相比,百度最大的优势是立足本土,构建了语言和文化层面理解的护城河。作为中国公司研发的大语言模型产品,文心一言的中文理解能力备受关注。重要原因是,此前很多评论人士认为,ChatGPT的中文问答能力不如英文问答能力强。李彦宏表示,作为扎根于中国市场的大语言模型,文心一言具备中文领域最先进的自然语言处理能力。在现场展示中,文心一言正确解释了成语“洛阳纸贵”的含义、“洛阳纸贵”对应的经济学理论,还用“洛阳纸贵”创作了一首藏头诗。李彦宏称,文心一言的训练数据包括:万亿级网页数据,数十亿的搜索数据和图片数据,百亿级的语音日均调用数据,以及5500亿事实的知识图谱等,这让百度在中文语言的处理上能够独一无二。受访专家也指出,由于汉语的特殊性,中国企业在研发大模型时面临的难度更大,但若突破了,也会在提供本土服务时,具备更大的优势。法国里昂商学院人工智能与商业分析教授丁文璿日前对媒体指出,语言对话模型训练,需要让机器对文字产生理解,英语比中文稍微容易一些。丁文璿解释,中国人工智能技术所处理的中文语言,大多都是象形词,而英文是解释性的,相较而言词语也并非特别丰富。上海交通大学约翰·霍普克罗夫特计算机科学中心助理教授林洲汉认为,未来大语言模型大概率会往多模态、交互式的方向发展,进一步将视觉、语音、强化学习等领域的技术综合进来。李彦宏也表示:“多模态是生成式AI一个明确的发展趋势。随着百度多模态统一大模型的能力增强,文心一言的多模态生成能力也会不断提升。”在多模态生成方面,李彦宏展示了文心一言生成文本、图片、音频和视频的能力。文心一言在现场用四川话朗读了一段内容,并根据文本生成了一段视频。但李彦宏透露,文心一言的视频生成成本较高,现阶段还未对所有用户开放,未来会逐步接入。李彦宏称,文心一言的训练数据包括:万亿级网页数据,数十亿的搜索数据和图片数据,百亿级的语音日均调用数据,以及5500亿事实的知识图谱等,这让百度在中文语言的处理上能够独一无二。受访专家也指出,由于汉语的特殊性,中国企业在研发大模型时面临的难度更大,但若突破了,也会在提供本土服务时,具备更大的优势。法国里昂商学院人工智能与商业分析教授丁文璿日前对媒体指出,语言对话模型训练,需要让机器对文字产生理解,英语比中文稍微容易一些。丁文璿解释,中国人工智能技术所处理的中文语言,大多都是象形词,而英文是解释性的,相较而言词语也并非特别丰富。上海交通大学约翰·霍普克罗夫特计算机科学中心助理教授林洲汉认为,未来大语言模型大概率会往多模态、交互式的方向发展,进一步将视觉、语音、强化学习等领域的技术综合进来。李彦宏也表示:“多模态是生成式AI一个明确的发展趋势。随着百度多模态统一大模型的能力增强,文心一言的多模态生成能力也会不断提升。”在多模态生成方面,李彦宏展示了文心一言生成文本、图片、音频和视频的能力。文心一言在现场用四川话朗读了一段内容,并根据文本生成了一段视频。但李彦宏透露,文心一言的视频生成成本较高,现阶段还未对所有用户开放,未来会逐步接入。发布会前后,百度的股价经历了大落大起。3月16日,港股百度盘中股价跌幅一度扩大超10%,报120.1港元。截至收盘,百度股价跌幅为6.36%,报125.1港元。但百度股价在美股势头强劲,当日百度美股开盘低开高走,振幅超7%。截至收盘,报138.16美元,涨幅为3.8%。3月17日,百度港股表现强势,盘中一度大涨超15%。截至当日收盘,百度港股涨幅为13.67%,报142.2港元。文心一言宣布开启邀请测试一小时内,排队申请文心一言企业版API调用服务测试的企业用户已达3万多家,申请产品测试网页多次被挤爆,百度智能云官网流量飙升百倍。文心一言的市场热度持续飙升,资本市场也给予了价值重估。张毅认为,这也代表了公众对大语言模型/生成式AI “既期待,又担忧,然后是希望”的心情。02谁都不能错过的科技革命“真的ready了吗?”并不仅针对百度,也是伴随此轮“ChatGPT”热潮以来,公众普遍的疑问。李彦宏观察到,从2021年开始,人工智能技术开始从“判别式”向“生成式”转变。创新工场董事长兼CEO李开复3月14日在一场趋势分享会上表示,AI 2.0时代的第一个现象级应用,就是以GPT-4为代表的AIGC,又称生成式AI(Generative AI)。李开复表示,AI2.0 是绝对不能错过的一次革命,它将会是一个巨大的平台性机会,这个机会将比移动互联网大十倍。他还表示,AI 2.0也是中国在AI领域的第一次平台角逐机会。受访专家普遍认为,此前全世界的AI企业都遇到了一个极大的问题:即使技术储备十分丰富,AI应用并没有给它们带来丰厚的收益。造成这一问题的原因在于,AI产品的应用主要集中在B端(企业用户)和G端(政府用户),AI产品在进入企业或机构时往往流程复杂,这在某种程度上会限制AI产品在市场上的快速扩张。张毅认为,AIGC的产品应用方向在C端更有可能产生巨大的商业机会。他分析说,在美国市场,此前C端市场被谷歌、亚马逊、Meta等企业抢占,让微软压力非常大,更需要一款产品来扳回一局。在中国市场,百度的优势和谷歌一样,都有强大的搜索引擎对数据的抓取能力,以及储存、整理、分析能力的基础。中国本身拥有十几亿人口的巨大市场,百度完全可以做得很优秀。“百度和微软、谷歌本质上是两个不同市场的竞争,所以我相信文心一言以及系列产品也一定会跑出来。”张毅说。李彦宏坚称,文心一言不是“中美科技对抗的工具”。但他也承认,ChatGPT 的成功,加快了百度推出该产品的进度。百度CTO王海峰表示,人类进入AI时代,IT技术的技术栈可以分为四层:芯片层、框架层、模型层和应用层。百度是全球为数不多、在这四层进行全栈布局的人工智能公司,在各个层面都有领先业界的自研技术。高端芯片昆仑芯、飞桨深度学习框架、文心预训练大模型以及搜索、智能云、自动驾驶、小度等应用。王海峰认为,百度全栈布局的优势在于,可以在技术栈的四层架构中,实现端到端优化,大幅提升效率。文心一言与ChatGPT一样,都使用了SFT(模型微调)、RLHF(从人类反馈中进行强化学习)以及Prompt(提示)作为底层技术。文心一言还采用了知识增强、检索增强和对话增强技术。王海峰表示,这三项是百度已有技术优势的再创新。陈端认为,在当前技术创新的集成性越来越高的当下,全栈式布局的单一公司在内部技术研发统筹能力和后期商业化进行中的协同能力上具有比较优势。信心很重要,但差距无法忽视。在本月初的两会期间,中国科技部部长王志刚在回应ChatGPT相关的问题时,用足球打比方,指出中国还有很多工作要做。“踢足球都是盘带、射门,但是要做到梅西(足坛巨星利昂内尔·梅西)那么好也不容易。”王志刚指出,中国在这方面也作了很多布局,在该领域的研究也进行了很多年,并且有一些成果,“但目前要达到像 OpenAI 的效果可能还要拭目以待”他补充道。王志刚说,ChatGPT出来以后,引起了大家的关注。实际从技术本身源头来讲,它叫做NLP、NLU,也就是自然语言处理和自然语言理解。ChatGPT之所以引起关注,在于它作为一个大模型,有效结合了大数据、大算力、强算法,计算方法有进步。同样一种原理,做得有区别。比如大家都能做出发动机,但质量是有不同的。无论是ChatGPT还是文心一言,其背后的大语言模型是核心竞争力。北京大学王选计算机研究所研究员赵东岩告诉财经E法,国内大模型在数据、训练方法和费用投入方面和OpenAI还有一定差距。一位科技系统人士则对财经E法指出,客观而言,中美目前在该领域的基础研究成果差距较大。这些基础研究成果包含自然语言处理(NLP)、数据库、GPU产品,“美国切断GPU芯片(的供应),(中国的)算力就跟不上”。大型算力的核心在于高性能GPU芯片。北京航空航天大学软件学院助理教授周号益告诉财经E法,在GPU芯片等计算硬件上,中国与国际的差距在十年左右,硬件水平会严重制约大语言模型以及科学计算类模型的发展。周号益认为,在技术和模型上,中国的科技公司与OpenAI并没有代差,差距仅在五年以内,在一些较小的技术领域差距只有2-3年。在数据采集方面,以GPT-3大模型为例,其训练的语料中中文只占5%,中国科技企业对中文语料的积累具有一定优势,因此极有可能在中文领域实现突破。03巨头下一步:构建生态对于以ChatGPT为代表的大语言模型赛道如何实现盈利,是各方公认的难题(ChatGPT爆火的冷思考:盈利难题与治理挑战)。开发出ChatGPT的OpenAI仍是一家亏损中的创业公司。而2023年1月,投资银行摩根士丹利(Morgan Stanley)的一份分析报告称,ChatGPT的一次回复成本大约是谷歌搜索查询平均成本的6倍-28倍。但腾讯研究院高级研究员曹建峰和经纬创投前副总裁庄明浩都认为,ChatGPT能带来多少盈利,并不是OpenAI关注的重点,重点是基于它的模型能长出什么样的服务和应用,从而构建起一个生态系统。“ChatGPT的发展需要一个产业生态,比如它和微软相关应用的融合就是很好的思路。”曹建峰说。当地时间3月15日,微软副总裁兼消费者首席营销官余瑟夫·梅迪发文表示,新版必应搜索引擎已经在 GPT-4 上运行。另据OpenAI披露,GPT-4是在微软Azure AI 超级计算机上进行训练的,并将基于Azure 的AI基础架构向世界各地的用户提供 GPT-4服务。谷歌则宣布开放其大语言模型PaLM的API接口,并推出面向开发者的工具MakerSuite。通过PaLM API 接口,开发者们可以将PaLM用于各种应用程序的开发。MakerSuite则可以让开发者快速对自己的想法进行原型设计,并且随着时间的推移,该工具将具有用于快速工程、合成数据生成和自定义模型调整的功能。微软迅速跟进。当地时间3月16日,微软宣布将把GPT-4接入Office全家桶。新功能名为“Microsoft 365 Copilot”。李彦宏则在发布会上表示,文心一言定位于人工智能基座型的赋能平台,将助力金融、能源、媒体、政务等千行百业的智能化变革。根据文心一言的邀请测试方案,3月16日起,首批用户可通过邀请测试码,在文心一言官网体验产品,后续将陆续开放给更多用户。百度智能云即将面向企业客户开放文心一言API接口调用服务。该服务于3月16日起开放预约。截至3月18日早11点,排队申请百度智能云文心一言企业版API调用服务器测试的企业用户增加到9万家,百度收到关于文心一言合作的咨询 6588条。陈端认为,这一轮的竞争,不仅是商业主体的竞争,实际上也是关乎下一轮国家数字竞争力的竞争。百度的当务之急不完全是技术层面的研发,也需要引领更多初创型企业、生态合作伙伴加盟生态阵营。在陈端看来,中国在构建生态系统上具有优势。陈端指出,中国的移动互联网经过多年发展,应用层生态化的配套创新已经非常成熟。应用层的很多中小微创业团队,在过去配合移动互联生态做了大量的局部、垂类场景端的创新,把过去的这种模式以及底层基础设施从移动互联迁移到大模型领域依然适用。04中小企业还有机会吗?面对大语言模型的浪潮,中国企业该如何抓住机遇,避免风险?布局ChatGPT的企业有两种类型:第一种是传统的互联网大公司,第二种是一些初创企业。陈端认为,目前市场上的初创公司已经错过了布局大模型的初始创业阶段。陈端分析说,重新打造生成式AI企业,跟时机、底层的生态支撑度,还有创始人自身的阅历、经验、视野、个人IP的自然调动能力都是息息相关的。大模型在前期的投入,不管是算力还是其他的成本,以及时间窗口都很重要。陈端表示,百度有能力把自己的其他的产品与文心一言协同,就像微软把Office与GPT-4协同推出Copilot,而“创业者单纯去拼大模型却没有配套生态,这是很成问题的”。张毅也认为,对于能够有资金、实力支撑的企业来讲,单独构建大模型产品可能会更受资本和创业者的青睐。但对于中小企业来讲,依托文心一言的开放平台去嫁接自己在细分领域的应用,也是一个不错的选择。因为要做出大语言模型,需要长时间,以及巨额资金的投入。OpenAI成功的背后,是微软多年来的巨额投入。美国时间2023年1月23日,微软宣布将对OpenAI进行为期数年、价值数以十亿计美元的投资。在2019年和2021年,微软曾向OpenAI两次投资。2019年的投资为10亿美元,而2021年的投资未公开金额。 AI公司“彩云科技”的创始人袁行远在接受36氪采访时指出,要想跑通一次100亿以上参数量的模型,至少要做到“千卡/月”这个级别,即:用1000张GPU卡,然后训练一个月。即使不用最先进的英伟达A100,按照一张GPU五万元的均价计算,1000张GPU意味着单月5000万的算力成本,这还没算上算法工程师的工资。“无论是哪家公司,都不可能靠突击几个月就能做出这样的大语言模型。”李彦宏在发布会上表示,深度学习、自然语言处理,需要多年的坚持和积累,没法速成。大模型训练堪称暴力美学,需要有大算力、大数据和大模型,每一次训练任务都耗资巨大。百度提供的数据显示,百度近十年累计研发投入超过 1000 亿元。2022 年百度核心研发费用 214.16 亿元,占百度核心收入比例达到 22.4%。但百度并未透露大模型研发在核心研发费用中的占比。李彦宏在发布会上表示,百度对文心一言的定位,是一个通用的赋能平台,金融、能源、媒体、政务等千行百业,都可以基于这个平台来实现智能化变革,实现效率提升,创造巨大的商业价值。李彦宏认为,大模型时代将产生三大产业机会,分别为新型云计算公司、进行行业模型精调的公司和基于大模型底座进行应用开发的公司,即应用服务提供商。李彦宏断言,对于大部分创业者和企业来说,真正的机会并不是从头开始做ChatGPT和文心一言这样的基础大模型,这很不现实,也不经济。基于通用大语言模型抢先开发重要的应用服务,这可能才是真正的机会。基于文本生成、图像生成、音频生成、视频生成、数字人、3D等场景,已经涌现出很多创业明星公司,可能就是未来的新巨头。“大模型、生成式AI最终的产品形态还不得而知,所以这条路注定是长跑,需要整个科技界在资本、研发、模式创新上密切、持续地跟跑。”张毅说。李开复认为,AI2.0会最先应用在能容错的领域,而毫无疑问最大的应用领域现在是内容创造。每个领域都可以把原有的App重写一次,创造出更赚钱的商业模式,最终AI2.0的生成能力会把成本降的几乎到0。
  • 宋江卿可
    宋江卿可
    以下列举一些常见的AI诈骗方式以及如何分辨AI诈骗:1.仿冒账号诈骗:诈骗者利用AI技术伪装成一些正常的社交媒体或钱包官方账户,向您发送有诱惑的信息,骗取您的敏感信息或转账:一般情况下,这些账户自己上的关注者比较少,且发出信息的文字、语法不太标准。2.垃圾短信垃圾邮件诈骗:诈骗者利用AI技术批量伪造手机号码或电子邮箱,向您发送有诱惑的信息,诱骗您点击或下载恶意文件:这类信息一般以卫生、体育彩票官方或知名电商为名,内容通常有诱惑性,需要警惕。3.虚假网站诈骗:诈骗者利用AI技术建立虚假网站,将其看起来和真实网站非常相似,向您发送有诱惑的链接并诱骗您提供私人敏感信息或转账:这类网站通常是虚假官网或虚假金融网站,通常URL地址显示错误或格式上存在区别,需要警惕。4.语音诈骗:诈骗者利用AI技术调用一个虚拟号码,模拟成业务人员或亲人,耐心沟通并机智应答,骗取您的敏感信息、资金或密码等信息:这类骗术一般需要您提供详细的个人信息,需要警惕。要避免AI诈骗,我们需要提高警惕,切勿轻信信息或链接,不要轻易向陌生人透露个人信息和账户密码,保持长久的密码使用习惯,及时举报和通知有关部门。继续说一下如何分辨AI诈骗:5.社交工程学诈骗:诈骗者利用AI技术和社交工程学技巧,发送钓鱼邮件、微信等消息,引诱您点击恶意链接、下载附近或者转账汇款,从而获取您的个人账号、密码等信息:一般这类邮件、消息会模仿著名公司或者个人,包含大量恐吓、要求立即处理、紧急重要等词句来达到恐吓或者引诱的目的。6.图片诈骗:诈骗者使用AI技术生成虚假图片或者涂鸦,往往伴随着点击就送礼物、答题就有红包等语言,骗取您的业务号码和短信验证码等个人信息。7.视频诈骗:诈骗者借助AI技术制作虚假视频,通过软件或者相应平台传播、推广,向大量用户发送群发式信息,吸纳用户发起莫名的投资或抢购,获取用户的资金。追究起来,由于证据更为复杂,诈骗方法更多元化,导致很难维权。为了避免AI诈骗,我们需要:1.提高安全防范意识,不轻易相信陌生来电、短信、邮件。2.认真核对网站、APP、公众号的真伪,验证信息及APP权限。3.不随意点击陌生链接;不下载疑似侵权、病毒的应用程序。4.不泄露个人身份证号码、银行账号、密码、验证码、账户信息等敏感信息。5.及时更换系统密码和支付密码,避免密码问题给诈骗者留下可乘之机。如若已经被骗,需要及时向银行、公安等部门报案,努力争取维权。
  • 浦元进胜
    浦元进胜
    由于从事智能客服领域,对智能客服的开发也有比较全面的了解,这里从AI技术的角度介绍一下。 智能客服用到的技术群 智能客服机器人会用到很多人工智能方面的技术,比如自然语言理解、深度神经网络、知识图谱、语音识别、语音合成等方面的技术。为了便于您从总体上了解这些技术,以璞娲智能客服用到的技术为例,请参考下面不同角度的技术全景图。 从客服处理过程理解AI技术 要理解智能客服中的AI技术,我们可以从技术的应用过程来加以理解。比如电话应对过程中,智能客服会用到下面几种技术。智能客服中用到的AI技术 上面从客服处理过程的角度介绍了几种技术范畴, 首先你要知道它一定要具备学习能力,接下来就是各种喂数据了。 可以从以下几个步骤着手: (1)确定任务(智能客服); (3)任务或问题的明确定义:当做分类任务解决 还是 直接生成回答的问题;针对不同的问题,分别考虑数据收集、收据处理、算法选型、评估方案与指标设计、实验设计、上线方案和运维等问题。 (4)详细分析好任务和待回答的问题后,就需要准备语料库(注重数据质量,好的数据质量,胜过最优秀的算法); (5)数据预处理,将文本数据转换为词向量(有多种方法,如word2vec等等),考虑输入数据与标签数据组织形式,可以参考智能问答相关的开放数据集; (6)数据分析,主要包括数据量大小的分析、词向量高维嵌入分析、如果是分类任务还要分析类别的数据平衡性;能想到的统计分析与数据处理方法都可以考虑,目标是数据高质量;值得一提:数据量的大小决定数据处理(如需要数据增广、类别平衡、数据上或下采样等)、方法的选择以及模型训练的方法(如使用预训练模型、考虑小样本学习方法等); (8)实验与结果评估,注重训练数据与评价数据划分,科学/严谨实验,科学分析;利用设计指标进行评估并充分分析实验结果,寻找模型做得不好的样本案例(badcase); (9)badcase分析与解决; (10)上线前实测,逐步扩大用户使用范围; (11)继续跟进和改进出现的问题,重复(1)~(10)的环节。 智能客服的主要价值在哪里? 在企业的经营中,客服是必不可少的角色,在很大程度上,客服是企业与客户唯一的直接接触通道,客服的价值在于解决用户问题,改善用户体验,提升企业口碑,营销促进交易等等,但传统的客服模式放到如今的互联网时代,短板立现。成本、效率、沟通方式等都有待提升与改进,由此,智能客服的价值得以凸显。 直观来看,智能客服对传统客服行业的主要价值体现如下: 1、智能客服在处理有明确结论的简单重复性问题上,展现了极高的工作效率,人工客服可以节省更多时间与精力去处理更为复杂、关键的客户问题,去服务VIP或是个性化需求更强烈的客户,从而达到提升客户满意度的效果。同时企业的人力、管理、运维成本都得到大幅下降。 2、智能客服在本质上是机器,机器没有生理局限,服务时长远大于人力,同时它也不存在情绪波动,可以实现百分之百的微笑服务,保持标准的服务质量。特别是在客户业务规模达到明显的波峰波谷时,智能客服可以在短期内实现大批量复制解决,以应对业务量的波动,实现弹性运维。 3、智能客服还可以应用在企业的营销活动中,在传统的电销时代,人工外呼作为很多企业的营销主要手段,耗时长,效果差,一个客服一天所能拨打的电话量有限,而电销恰巧又是一个需要“广撒网,多尝试”的营销方式。此时,智能客服交互系统中的呼叫中心功能就可以被很好的利用起来,增加呼出频率,扩大呼叫范围,提升呼叫中心的价值创造力。 智能客服既有这么多优势,那它的出现又是否会对传统的人工客服造成替代性的威胁呢? 其实不然,传统的客服行业就像是一座金字塔,人工智能并不是将它推倒重建,而是在思考如何做到机器辅助人工,部分代替人工,扩大金字塔的基层,稳固上层结构。 由此,智能客服的主要价值可以概括为:在满足企业对客服工作的需求的同时为企业减投增效,帮助企业更好的实现营收。 逻辑推理 知识表示 自动规划 机器学习 自然语言 感知 行动处理 人类情绪 计算创造 综合智能 只要用在合适的地方。无论各行各业,机器人代替人工,能够极大增强企业办公效率,增加收益,降低用人成本,人工智能的发展最大的受益者是人类。人类的创意是无限的,但是自身能力也是有局限性的,也需要机器人来辅助人类。所以各有优势,无所谓谁的业务能力强,都是相互弥补的。这没法比较。 随着电话服务热线的出现,以及企业客户服务的不断提高。在移动互联网时代,客户通信服务也变得多样化。除了申请400或95个号码建立客户服务系统来改善客户服务外,企业还通过网络服务、移动应用、公共微信、微博等渠道提供服务。当越来越多的人以这种方式与企业员工接触时,当人工客户服务不能及时处理多个用户和问题时,导致客户体验差,再加上企业的雇佣成本不断增加,智能客户服务机器人顺应时代的到来。智能客户服务机器人已经成为企业与用户之间最重要的通信工具。广泛应用于金融、教育、电子商务等领域。 在微博上,我们总能看到一些客户服务机器人在本地测试市场上并不想象智能,自动回复单句严重,回复内容错误,人们想要有人工的客户服务来与他们沟通。问题是,客户服务机器人什么时候才能真正“理解”?编辑曾体验过腾讯、阿里小米、京东和大银行的在线客服平台。电子商务服务平台具有响应速度快、识别率高、产品促销个性化、信息优惠等增值服务的共同特点。但对这句话的理解却偏低。 在当前的客户服务中,机器人客户服务作为手动客户服务的辅助工具,帮助手动客户服务解决,解决客户的诸多问题,降低手动客户服务的工作压力,提高工作效率手动客户服务,大大提高了解决方案的准确性。效力。在与人类的对话中,客户服务机器人已经成为人类复杂情绪的难点。在接下来的几年里,客户服务机器人不会完全取代人们的工作。深入整合人机的“无人值守客户服务”是打破这一瓶颈的最佳方式。 所谓智能客服机器人实际上是一个人工智能信息系统,它可以用自然语言与用户进行通信。它使用了许多智能人机交互技术,包括自然语言理解和机器学习技术。它能够以文本或语音的形式识别和理解用户的问题,通过语义分析了解用户的意图,与用户进行人性化的沟通,为用户提供信息咨询等相关服务。 在当前人工智能迅猛发展的浪潮中,福山北明信息技术公司负责人表示,优秀的客户服务依靠人工实能和海量数据来深化客户服务场景的应用,不断优化、创新和完善。描述了“可定制”的智能客户服务,它能够准确地适应业务需求并继续学习,并帮助、适应和回答大量的常见问题。它大大提高了人类的效率。它可以广泛应用于网站、应用程序、电话客户服务甚至离线窗口。优秀的客户服务已成为深圳平安公司的合作伙伴。在智能客户服务领域实现了战略合作。全面启动人机对话培训平台,为企业构建基于ai的智能客户服务解决方案。 2018年9月,发布了4.0.0正式版本的优秀客户服务,添加了群集和企业知识管理系统,使用群集解决方案支持多点部署方案,添加了企业知识管理系统组件,并拥有专业知识管理系统。和新的移动智能推荐。深入挖掘各种需求场景,人们对机器人的满意度并不低于人工。 佛山市贝米信息技术有限公司(www.youkefu.cn)成立于2017年3月,是一支年轻而充满活力的团队。公司的主要“优质客户服务”是一个全渠道的综合客户服务系统,集成了多个客户服务渠道,以帮助各个行业。各种规模的企业建立了客户服务体系。通过邮件,短信,电话语音,webim在线客服,微信,微博,h5页面,app界面等各种渠道的客户服务请求和对话,集成在管理平台上,统一响应和支持客户服务。 当你打 10086 的电话,语音提示如下: 欢迎致电中国移动, 全心全意为您服务, 普通话服务请安 1, For English service press pound key ... 我这个手机号用了 5 年了吧,打10086这个电话不下 50 次了,你还不知道我是不是说普通话? 以上只是举了一个最常见的例子。 随着智能技术的发展,越来越多的客服咨询都开始交由对话机器人解决。 就在冠状病毒疫情爆发,大量民众通过手机或电脑咨询政府以了解最新的疫情信息和防控措施。在这特殊情况下,原本的人工客服是无法承接这么多咨询的,而客服客服就尤为重要。 简单来所,智能客服系统 主要基于自然语言处理、大规模机器学习、深度学习技术,使用海量数据建立对话模型,结合多轮对话与实时反馈自主学习,精准识别用户意图,支持文字、语音、图片等富媒体交互,可实现语义解析和多形式的对话。 但是每个行业有自己的业务特点和知识范围,每个呼叫中心公司都应该根据自己的业务,逐步解决最基本的问题。 比如10086,一次次重复问你说普通话还是英语。 智能服务是一个过程,不是结果。 随着AI人工智能赋能客户服务。智能客服系统应运而生。 智能客服在提升企业服务质量和工作效率,降低企业管理和运营成本,提高企业的核心竞争力方面有着重要作用。 我们利用AI技术能够同时实现 智能语音导航、智能话务员、智能工单管理、智能数据分析、智能语音质检、智能外呼 等功能。 并且能够与用户原有的呼叫中心系统有效对接,具有简单操作易上手、功能齐备、实用性强的特点。 如果企业想实现客户服务精细化运营管理,可以考虑试用哦~ 一、智能机器人的能力人工智能客服系统的核心能力主要体现在智能机器人上,企业在选择机器人前,需要了解机器人有哪些功能或能力,可以帮助企业做选择参考。智能客服机器人通常包含以下几项关键能力。(一)自然语言识别能力机器人拥有自然语言识别能力,可以帮助机器人更好的理解人类语言。举个例子来说:人类对于一个问题会有多种不同的方式,机器人需要理解问题中的关键点,从而找到对应的问题。这是考察机器人性能时较为重要的指标。 (二)知识库和自主学习知识库相当于机器人的大脑,企业需要在使用初期为机器人建设一套知识库。这就相当于给新员工一个产品介绍或业务资料。在对接客户时机器人会从已有的知识库中搜索问题的答案。在不断接受问题和解决问题的过程中,智能客服系统机器人会完善知识库,将处理的问题积累下来,就形成了自我学习能力。通过这种方式可以方便以后更好的解决客户问题。(三)其他能力 有些智能客服机器人会有一些扩展能力,能通过网络/API接口找到一些其他资源,比如:查询快递、查询天气等等。具体来说:电商客服也许可以在与来客交谈时,帮助客户查询快递情况,这类需要由机器人就能完成了,并且速度和准确度都可以保证,无需额外的人力来处理这类问题。 二、人机对话有温度 智能客服机器人不仅能替代人工客服的工作,在拨通用户电话后,还可以像真人一样与用户进行沟通交流。而这些需要大量的人工智能技术支出,比如自然语言处理、语音识别等多个领域。
  • 傅志舒达
    傅志舒达
    和 ChatGPT 在 AIGC(AI- Generated Content,人工智能生成内容)领域一样具备颠覆性的事情正在发生。4 月 11 日,自动驾驶技术公司毫末智行在其第八届 HAOMO AI DAY 上,重磅发布行业首个自动驾驶生成式大模型 DriveGPT,中文名「雪湖·海若」,该模型参数规模达到 1200 亿,可用于解决自动驾驶研发过程中困扰已久的认知决策问题,并通过能力迭代,最终实现端到端自动驾驶。此前,受制于传统模型「数据量小、基于规则」等局限性,智能驾驶技术进展一度较为缓慢,甚至不少从业者都对未来产生了自我怀疑,在这样的背景下,两年前,毫末率先投入到大模型技术的研发之中,旨在寻找新的突破。经历了先行探索和反复验证,毫末成功找到了突破口——生成式大模型,通过在行业首个将 GPT 落地到自动驾驶领域,大大加速了更高阶智能驾驶的落地应用。「生成式大模型将成为自动驾驶系统进化的关键,基于 Transformer 大模型训练的感知、认知算法会逐步在车端进行落地部署。」毫末董事长张凯在 HAOMO AI DAY 上对行业未来发展趋势作出论断。毫末 CEO 顾维灏也表示:「DriveGPT 雪湖·海若将会重塑汽车智能化技术路线,让辅助驾驶进化更快,让自动驾驶更早到来。」顾维灏在自动驾驶技术领域的眼光独到,布局非常领先。毫末在 2021 年就已经开始了 Transformer 大模型技术的探索,并快速落地应用到 BEV 视觉感知算法当中,然后又以五大模型的方式来实现自动驾驶感知、认知算法的快速升级,现在这些大模型将统一到 DriveGPT 生成式大模型当中,目标将实现端到端自动驾驶。毫末的探索始终走在行业技术探索的前列。据了解,新摩卡 DHT-PHEV 即将首发搭载 DriveGPT 雪湖·海若量产上市,届时,用户市场还将迎来一轮新的震撼。「毫末真正重塑了行业信心,」一位业内人士略微激动地说道,「这将是一场革命。」01、DriveGPT 雪湖·海若,如何颠覆智能驾驶在介绍 DriveGPT 雪湖·海若之前,先回顾一下 ChatGPT 的概念,其全称是 Chat Generative Pre-trained Transformer,字面意思是用于聊天的生成式预训练 Transformer 大模型。其中 Transformer 是 ChatGPT 的重点,最早由谷歌在 2017 年提出,该模型基于注意力机制的设计,可以实现出色的算法并行性,因而迅速在自然语言处理(NLP) 领域流行起来,ChatGPT 就是其最新成果。Transformer 大模型对于智能驾驶来说也不陌生,在 NLP 中奠定了核心地位之后,被逐渐被引入计算机视觉(CV)领域,后又被特斯拉、毫末智行等行业龙头先行引入自动驾驶系统中,用于提升感知端的模型效果。毫末在 Transformer 大模型的应用上更进一步,将其率先拓展到智能驾驶系统认知端,DriveGPT 雪湖·海若由此诞生。从同样使用 Transformer 大模型的角度来说,ChatGPT 和 DriveGPT 雪湖·海若属于同宗同源。ChatGPT 是对话式的生成式自然语言模型,输入是自然语言的文本串,输出是自然语言的文本,可以完成通用的下游语言生成任务,比如多轮对话、代码生成、翻译、数学 运算等能力。而毫末 DriveGPT 雪湖·海若是用于自动驾驶场景的生成式大模型,输入是感知融合后的文本序列,输出是自动驾驶场景文本序列,即将自动驾驶场景 Token 化,形成「Drive Language」,最终完成自车的决策规控、障碍物预测以及决策逻辑链的输出等任务。DriveGPT 雪湖·海若首先在预训练阶段通过引入量产驾驶数据,训练初始模型,再通过引入驾驶接管 Clips 数据完成反馈模型 (Reward Model) 的训练,然后再通过强化学习的方式,使用反馈模型去不断优化迭代初始模型,形成对自动驾驶认知决策模型的持续优化。具体来说,DriveGPT 雪湖·海若会通过人类反馈强化学习的方式进行迭代,用 DriveGPT 雪湖·海若最新模型 (Active Model) 对真实场景 Case 做生成,产出多种场景序列结果,再用反馈模型给这些结果进行打分排序,目标是把好的结果排上来,差的结果排下去,然后与初始模型 (Pretrain-Model) 的生成概率做比较,放大比分。最后通过强化学习的方式将参数再次更新到最新模型 (Active Model) 中,一直反复这个迭代过程。Reward Model(反馈模型) 的训练过程是独立的,使用带有偏序关系的 Pair 样本对来训练,这些样本对来自于接管 Case,毫末将与人类驾驶结果相似的模型结果作为正样本,与被接管轨迹相似的作为负样本,这样来构建偏序对集合,再利用 LTR(Learning To Rank) 的思路去训练 Reward Model,进而得到一个打分模型。DriveGPT 雪湖·海若还可以输出决策逻辑链:即在输入端提供 Prompts(提示语),根据提示输出含有决策逻辑链 (Chain of Thought) 的未来序列。毫末 CSS 自动驾驶场景库是 CoT 的重要输入,拥有超过几十万个细颗粒度场景,将 Prompt 提示语和完整决策过程的样本交给模型去学习,学到推理关系,从而将完整驾驶策略拆分为自动驾驶场景的动态识别过程,完成可理解、可解释的推理逻辑链生成。除了用作认知决策,DriveGPT 雪湖·海若还可以逐步应用到城市 NOH、捷径推荐、智能陪练以及脱困场景中。有了 DriveGPT 雪湖·海若的加持,车辆行驶会更安全;动作更人性、更丝滑,并有合理的逻辑告诉驾驶者,车辆为何选择这样的决策动作。对于普通用户来说,车辆越来越像老司机,用户对智能产品的信任感会更强,理解到车辆的行为都是可预期、可理解的。尽管 DriveGPT 雪湖·海若刚出世就拥有强大的功能,但这还不是它的「终局」,毫末对于 DriveGPT 雪湖·海若的目标是实现端到端自动驾驶,后续毫末会持续将多个大模型的能力整合到 DriveGPT 雪湖·海若中。与此毫末也对外构建 DriveGPT 雪湖·海若生态,通过对行业提供开放服务,促进自动驾驶的从业者和研究机构,快速构建基础能力,释放创新。汽车之心获知,毫末 DriveGPT 雪湖·海若首批定向邀请了北京交通大学计算机与信息技术学院、高通、火山引擎、华为云、京东科技、四维图新、魏牌新能源、英特尔等加入。毫末对于大模型的开放从 DriveGPT 雪湖·海若的中文名「雪湖·海若」即可窥见。据了解,「海若」一词出自《庄子·秋水》中的神话人物北海若,在该书中,另一神话人物河伯请教北海若,何谓大小之分,北海若教导河伯说,不因天地而觉大,不因毫末而觉小。毫末据此把 DriveGPT 中文名命名为「海若」,寓意着智慧包容、海纳百川,为行业发展贡献力量。02、自动驾驶生成式大模型「第一枪」,为何由毫末打响自动驾驶领域顶级玩家众多,毫末凭何在全球首个推出了自动驾驶生成式大模型 DriveGPT 雪湖·海若?要回答这个问题,首先要理清楚毫末 DriveGPT 雪湖·海若的本质,它是应用在智能驾驶上的人工智能,就必然离不开人工智能三要素:算法、数据和算力,而这三者恰恰是毫末具备领先性优势的地方。首先在算法的技术路线上,毫末早早就坚定选择走渐进式发展路线,比「跃进式」玩家的量产时间更早,更快形成规模化,从用户真实使用场景中积累足够多的数据。毫末还清晰地提出了从自动驾驶 1.0 时代到自动驾驶 3.0 时代的演进路径,并率先进入以数据驱动为核心的新时代。从这时开始,自动驾驶获取的数据量与数据多样性将呈现指数级膨胀,在深度学习主导中,与大模型相辅相成,真正去解决自动驾驶最后的长尾难题。在 2021 年 12 月第四届 HAOMO AI DAY 上,毫末发布中国首个数据智能体系 MANA,其由四大板块组成,分别是 TARS、LUCAS、VENUS 和 BASE。BASE 是整个系统架构的底层,包括数据底座、数据融合、PoseidonOS 等。其他三大板块置于上层:TARS 代表毫末智行的开发的原型算法,包括感知、规划决策、地图定位、仿真引擎;LUCAS 是提取数据价值,以数据驱动系统能力持续迭代的核心子系统,解决场景泛化,评测和部署的问题;VENUS 则是数据看板,以参考标准评价算法的好坏。

相关推荐

更多

chatGPT,一个应用广泛的超级生产工具

  • 扫码优先体验

    chatGPT小程序版

    chatGPT小程序版
  • 关注公众号

    了解相关最新动态

    关注公众号
  • 商务合作

    GPT程序应用集成开发

    商务合作

热门服务

更多
    暂无数据

    最新问答

    更多